Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Journal of Traditional Chinese Medicine ; (12): 103-112, 2024.
Article in Chinese | WPRIM | ID: wpr-1005118

ABSTRACT

ObjectiveTo develop traditional Chinese medicine (TCM) formulae for the treatment of nonsevere coronavirus disease 2019 (COVID-19) and to explore its anti-inflammatory mechanism. MethodsThe dysregulated signaling pathways were determined in macrophages from bronchoalveolar lavage fluid of COVID-19 patients and in lung epithelial cells infected with SARS-CoV-2 in vitro based on transcriptome analysis. A total of 102 TCM formulae for the clinical treatment of nonsevere COVID-19 were collected through literature. The pathway-reversing rates of these formulae in macrophages and lung epithelial cells were evaluated based on signature signaling pathways, and the basic formula was determined in conjunction with TCM theory. The commonly used Chinese materia medica for nonsevere COVID-19 were summarized from the 102 TCM formulae as abovementioned. And together with the screening results from the Pharmacopoeia of the People's Republic of China, a “Chinese materia medica pool” was esta-blished for the development of TCM formulae for COVID-19. The regulatory effects of each herb on signaling pathways were obtained based on targeted transcriptome analysis. Oriented at reversing dysregulated signaling pathways of COVID-19, the calculation was carried out, and the artificial intelligent methods for compositing formulae, that are exhaustive method and parallel computing, were used to obtain candidate compound formulas. Finally, with reference to professional experience, an innovative formula for the treatment of nonsevere COVID-19 was developed. The ethanol extract of the formula was evaluated for its anti-inflammatory effects by detecting the mRNA expression of interleukin 1b (Il1b), C-X-C motif chemokine ligand 2 (Cxcl2), C-X-C motif chemokine ligand 10 (Cxcl10), C-C motif chemokine ligand 2 (Ccl2), nitric oxide synthase 2 (Nos2), and prostaglandin-endoperoxide synthase 2 (Ptgs2) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RAW264.7 cells treated with lipopolysaccharide (LPS). ResultsIn macrophages and lung epithelial cells, 34 dysregulated signaling pathways associated with COVID-19 were identified respectively. The effects of the 102 formulae for clinical treatment of nonsevere COVID-19 were evaluated based on the dysregulated signaling pathways and targeted transcriptome, and the result showed that Yinqiao Powder and Pingwei Powder (银翘散合平胃散, YQPWP) ranked first, reversing 91.18% of the dysregulated signaling pathways in macrophages and 100% of the dysregulated signaling pathways in lung epithelial cells. Additionally, YQPWP had the function of scattering wind and clearing heat, resolving toxins and removing dampness in accordance with the pathogenesis of wind-heat with dampness in COVID-19. It was selected as the basic formula, and was further modified and optimized to develop an innovative fomula Qiaobang Zhupi Yin (翘蒡术皮饮, QBZPY) based on expert experience and artificial intelligence in composing formulae. QBZPY can reverse all the dysregulated signaling pathways associated with COVID-19 in macrophages and lung epithelial cells, with the reversing rates of 100%. The chief medicinal of QBZPY, including Lianqiao (Fructus Forsythiae), Xixiancao (Herba Siegesbeckiae) and Niubangzi (Fructus Arctii), can down-regulate multiple signaling pathways related with virus infection, immune response, and epithelial damage. RT-qPCR results indicated that compared with the model group, the QBZPY group down-regulated the mRNA expression of Il1b, tumor necrosis factor (Tnf), Cxcl2, Cxcl10, Ccl2, Nos2 and Ptgs2 induced by LPS in RAW264.7 cells (P<0.05 or P<0.01). ConclusionBased on targeted transcriptome analysis, expert experience in TCM and artificial intelligence, QBZPY has been developed for the treatment of nonsevere COVID-19. The ethanol extract of QBZPY has been found to inhibit mRNA expression of several pro-inflammatory genes in a cellular inflammation model.

2.
Acta Pharmaceutica Sinica B ; (6): 2239-2251, 2022.
Article in English | WPRIM | ID: wpr-929406

ABSTRACT

The potential medicinal value of Ma bamboo (Dendrocalamus latiflorus), one of the most popular and economically important bamboo species in China, has been underestimated. In the present study, we found that D. latiflorus leaf extract (DLE) reduced fasting blood glucose levels, body weight, and low-density lipoprotein cholesterol with low liver toxicity in db/db mice. In addition, gene expression profiling was performed and pathway enrichment analysis showed that DLE affected metabolic pathways. Importantly, DLE activated the AKT signaling pathway and reduced glucose production by downregulating glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1) expression. Moreover, network pharmacology analysis identified rutin as an active component in DLE through targeting insulin growth factor 1 receptor (IGF1R), an upstream signaling transducer of AKT. Due to its hypoglycemic effects and low toxicity, DLE may be considered an adjuvant treatment option for type 2 diabetes patients.

3.
China Pharmacy ; (12): 801-806, 2019.
Article in Chinese | WPRIM | ID: wpr-817046

ABSTRACT

OBJECTIVE: To investigate the effects of Dendrobium officinale polysaccharides on gene expression profile of HUVEC. METHODS: HUVEC was selected as objects. MTS method was used to detect the effects of different doses of D. officinale polysaccharides (50, 100, 200, 400, 800 μg/mL) on the proliferation activity of HUVEC. The growth inhibitory concentration of 30% cells (IC30) was calculated to screen the dose of follow-up tests. cDNA microarray assay was used to detect the changes of gene expression profile for HUVEC after treated with D. officinale polysaccharides for 24 h, so as to screen differentially expressed genes. GO enrichment analysis and KEGG pathway enrichment analysis were performed for top 5 differentially expressed genes by using DAVID bioinformatics resource database. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) was used to validate the results of microarray detection with immunity-related differentially expressed genes as objects. RESULTS: After treated with 100, 200, 400, 800 μg/mL D. officinale polysaccharides, survival rate of HUVEC  were decreased significantly (P<0.05 or P<0.01). IC30 value was 408 μg/mL. After treated with 400 μg/mL (by IC30) D. officinale polysaccharides, there were 91 differentially expressed genes in HUVEC cells, of which 84 were up-regulated and 7 were down-regulated. Top 5 genes of up-regulated and down- regulated expression were SELE, CCL2, CXCL6, IL8, ICAM1 as well as VWCE, CPT1A, CLU, CCL14, CINS4, which may be mainly associated with immune conditions and inflammatory responses. The differentially expressed genes mainly distributed in extracellular domain, and were enriched in biological processes such as production and response of cytokines and stimulus response, and played molecular functions such as chemokine and its receptor activity. The up-regulated genes as SELE, ICAM1 and CXCL2 were mainly enriched in TNF signaling pathway, influenza A (H1N1), herpes simplex virus infection and other pathways. The down-regulated gene CCL14 was mainly enriched in chemokine signaling pathway. Results of qRT-PCR validation tests showed that relative expression of ICAM1 was increased significantly, while that of CCL14 was decreased significantly (P<0.05), which was in agreement with microarray detection results. CONCLUSIONS: After treated with D. officinale polysaccharides, the expression of 91 genes in HUVEC cells are different significantly, mainly being up-regulated. The differentially expressed genes may participate in immune regulation through TNF signaling pathway, influenza A (H1N1) and herpes simplex virus infection.

SELECTION OF CITATIONS
SEARCH DETAIL